Measurements of CO$_2$-fluxes over urban surfaces are rare, even though cities are an important source of CO$_2$. However, the morphologically complex surfaces and the non-homogeneous distribution of CO$_2$-sources form methodological difficulties (Grimmond et al., 2002).

It is the aim of BUBBLE (Basel Urban Boundary Layer Experiment, a COST 715 action) to increase the knowledge of mass, momentum and energy exchange over urban surfaces (Rotach, 2001). Results from profile measurements of mean CO$_2$-concentrations should help explaining the exchange processes rather than quantifying urban emissions. The presented results focus on diurnal mean courses combined with traffic data and selected turbulence parameters.

Site

The instrumented canyon (“Basel-Sperrstrasse”) is located in a densely built-up part of the city of Basel. The surface has a high plane area density A_p of 0.57 and an average building height h of 14.6 m.

A triangular lattice tower was installed 3 m off the northern building wall and operated over nearly one year. It supported measurements of mean CO$_2$-fluxes and mean CO$_2$-concentration profiles are available.

Observations of CO$_2$ gradients derived from profiles fit with eddy covariance flux measurements (open path).

Maximums of CO$_2$-concentrations are observed during morning hours with relatively high traffic and low mixing.

Concentrations are always decreasing with height. This results in positive fluxes of CO$_2$ away from the urban surface all the time. This is in agreement with other urban CO$_2$-studies (Nemitz et al., 2002) and in contrast to suburban surfaces, where a daytime CO$_2$-uptake was measured (Offerle et al., 2001). Smallest gradients are observed during early morning hours with low traffic.

Instrumentation

A CO$_2$/H$_2$O gas-multiplexer system sampled sequentially air from 10 tower levels. Air is sucked from each inlet at the tower through a 40 m tube down into a van, where a gas multiplexer and a LICOR 6262 gas-analyzer were operated. Each channel is sampled 30 s, the first 10 s after switching are discarded. Mean values over the remaining 20 s are stored. This results in mean profiles (10 levels) with a resolution of 5 minutes. The gas-analyzer was operated from December 2002 until July 2003 in differential mode, i.e. measuring continuously a zero gas in the reference cell. During the IOP in Summer 2002 additional instrumentation was deployed including two LICOR 7500 open path analyzers at $z/h=1.0$ (14m) and $z/h=2.2$ (31m).

Surface plot illustrating the mean value of the vertical CO$_2$ gradient in ppm m$^{-1}$ for given u, and traffic load on 1h blocks for March 1 to July 15 2002.

References

Additional Information

http://www.unibas.ch/geo/mcrProjects/BUBBLE/
(URL case sensitive)

Contact

Andreas Christen
Institute of Meteorology, Climatology and Remote Sensing
University of Basel
Klingelbergstrasse 27, 4055 Basel, Switzerland
andreas.christen@unibas.ch

The Swiss Federal Office for Education and Science provides partial funding of this study (# 000.0058).