

The potential of EO to support urban planning in Basel



Eberhard Parlow MCR Lab Univ. Basel§

## EO Data for Urban/Regional Planning Authorities – a useful option !?!

#### <u>RESEARCH</u>

- EO Data and knowledge for/from stateof-the-art research
- Individual scientific expertise
- Advanced numerical modelling
- Satellite data analysis and digital image analysis
   GIS-technologies

Need for a "data-information conversion module"

APPLICATION Information for planners/endusers/politicians Data translated into end-user's language Aggregated information for enduser's needs Compatability to user's computer environment



## **Special Requirements for the Basel Test Area**

- Location at the borders to France and Germany
- Cross-border planning activities
- Different statistical basis data within three countries
- Different geodetic systems in CH, F, FRG
- Two cantonal governments
- Need for data which are
  - homogeneous in the spatial domain
  - homogeneous in the temporal domain
  - available in high/very high resolution
  - spatially distributed
  - easy to be updated
  - compatible with end-users IT infrastructure and software
  - .... to be extended



## Which EO data can be of interest

- Digital terrain data
- 3D surface models of building structures from LIDAR data
- VHR resolution data
  - Problem: the better the pixel resolution the smaller is the area covered by remotely sensed data
  - Spatial homogeneity is not guaranteed
- Data integration is dependent from regional or local scale of interest
- Change detection of land cover/land use
- Weather dependency for optical data might be problematic
- Radar data offer data availability at any weather conditions
- Availability of data in the future





DTM computed from SRTM Radar data with 90 m resolution

DTM computed from ASTER Stereo data with 15 m resolution





IRS Basel : pan-sharpened image with lots of artefacts due to data resampling

Basel Quickbird : 2.4 m pixel resolution

QUICKBIRD – the same scene in 60 cm full resolution

## **TerraSar-X** image in enhanced resolution



Changes of land cover between 1984 and 2011 seen from Landsat imagery (True color image, ch 3-2-1)





## APEX (Airborne Prism Experiment) hyperspectral sensor – technical specifications

#### Туре

pushbroom (along track) scanner **Spectral Range** VNIR 380 – 970 nm SWIR 940 – 2500 nm **Spectral Channels** up to 534 channels (dep. on binning patterns) 220 bands in this study **Spatial Pixels** 1000, IFOV 0.028°  $\sim$  1.6 m width in this study Spectral Sampling Interval Between 0.5 nm and 15 nm **Spectral Resolution** Between 0.6 nm and 18 nm





Mounted on a Dornier Do228 operated by DLR Oberpfaffenhofen

## APEX flight campaign 2010 Basel





## **APEX spectral reflectance images**

(atmosphere-corrected, georeferenced, mosaicked and adapted to DEM resolution)



true color R: 641 nm G: 552 nm B: 461 nm

spatial resolution: pixel size: 1x1 m<sup>2</sup> 3300 x 5000 m<sup>2</sup> spectral resolution: 220 bands 400 .. 2438 nm

> CIR R: 860 nm G: 650 nm B: 552 nm





## Infratec VarioCam<sup>®</sup> flight track 2009 (helicopter borne)



12 flight lines N-S Height a.g.l.  $\sim 800$  m DOY 182 (July 1<sup>st</sup>) Time UTC 12:23 Solar elevation 62.3° Solar azimuth 208°

1 Hz frequency  $\sim$  3000 pictures 320 x 240 pixels Pixel size:  $\sim$  1.6 m spectral range 7.5..14 µm



#### Infratec VarioCam<sup>®</sup> derived surface temperatures (mosaicked, georeferenced, adapted to DEM resolution)



spatial resolution: 1 x 1 m<sup>2</sup> 3300 x 5000 m<sup>2</sup>

spectral resolution: 1 band spectral range 7.5..14 μm



## 3D high resolution building model

(vector model, rasterized to 1 x 1 m<sup>2</sup> resolution)

# geometry (height, slope, aspect) horizon, skyview factor, illumination angles





Climate and Constructions, 24-25 October 2011, Karlsruhe

## 3D high resolution building model

(vector model, rasterized to 1 x 1 m<sup>2</sup> resolution)

geometry (height, slope, aspect)
 horizon, <u>skyview factor</u>, illumination angles for <u>overflights</u>





## Imaging spectroscopy in urban environments

algorithm development (APEX)

- algorithm for urban material classification
  SAM (spectral angle mapper) implied in ENVI
- algorithm for broadband albedo
- products (APEX)
  - High resolution urban albedo map
  - High resolution urban surface materials map
  - LUT urban surface materials/material properties (albedo, emissivity, heat conductivity/capacity)
- not directly APEX related
  - Derivation of net radiation and heat fluxes



# Surface material classification spectral curves of urban surface material





## result of surface material classification

(spectral angle mapper (SAM) and spectral endmembers)



| bright tiles   | metal I   | asphalt I   | lawn/meadow | clay       | gravel   |
|----------------|-----------|-------------|-------------|------------|----------|
| red tiles      | metal II  | asphalt II  | trees I     | sandy soil | tar      |
| dark red tiles | metal III | asphalt III | trees II    | bare soil  | concrete |



## broadband albedo



0..70 %



## Products from hyperspectral data, IR camera overflight and 3D surface/building model

(spatial subsets, resolution 1x1 m<sup>2</sup>) broadband albedo

vegetation indices



skyview factor



shortwave downward radiation (modelled)



Surface brightness temperatures







