. Urban carbon dioxide Aux
Monitaring using
/ Eddy Covariance and
o] | Earth Chservation

Urban carbon dioxide flux monitoring using
Eddy Covariance and Earth Observation:

First results from diFUME project

Stavros Stagakis
Postdoc, ATM

24.11.2020
Current Studies in Physical Geography and Atmospheric Sciences
Fall Term 2020

;l)_’\|4 . . This project has received funding from the European Union’s
MCF == >_<|2_§>_< UanGrSlfy Horizon 2020 research and innovation programme under the
/XN of Basel Marie Sklodowska-Curie grant agreement No 836443




Contents

* Introduction
* Scope

* Methodology
* Results

* Conclusions

* Next steps
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| t ro u Ct I O Global warming relative to 1850-1900 (°C)

Paris Agreement, 2015:

Observed monthly global

¢ glObal temperatu e r|Se < 2 OC mean surface temperature

* |imit temperature rise to 1.5 °C

IPCC Special Report, 2018:

* global warming is likely to reach 1.5°C
between 2030 - 2052 if it continues to
Increase at the CLI r-r-e nt rate b) Stylized net global CO2 emission pathways

Billion tonnes CO2 per year (GtCOz/yr)

* 1.5 °Cgoal requires rapid and far-reaching COnemissions
transitions in energy, land, urban, 18 sach et strc
infrastructure (including transport and

buildings), and industrial systems.

Faster immediate CO2 emission reductions
limit cumulative CO2 emissions shown in

FUME

Likely range of modeled responses to stylized pathways

net zero in 2055 whi

1¢ Is reduced after 2030 (g b,c&d
» Faster COz reductions (bluein b &c¢) result in highcr
probability of limiting warming to 1.5°¢
No reduction of net non-CO: radiative forcing (purpleind
results in a lower probability of limiting warming to 1.5°C .
¢) Cumulative net COz emissions d) Non-COz radiative forcing pathways
Billion tonnes COz (GtCO2) Watts per square metre (W/m?)
g —

Non-COz radiative forcing
reduced after 2030 or
not reduced after 2030
Cumulative CO2
emissions in pathways
reaching net zero in

and 2040

Maximum temperature rise is determined by cumulative net CO2 emissions and net non-CO2
radiative forcing due to methane, nitrous oxide, aerosols and other anthropogenic forcing agents.

IPCC, Special Report, 2018



“Cities Are Where the Climate Battle Will Largely Be Won or Lost”
Antonio Guterres, UN Secretary-General

C40 World Mayors Summit, 2019

FUME



Introduction

Urban Areas:

* 55% (4.2 billion) of world
population lives in cities,
projected to increase to 68 % (6.7
billion) by 2050
UN, 2018

* 70 % of total anthropogenic CO,
emissions originate from urban

dareas
Canadell et al., 2009

FUME



Introduction

Urban Metabolism

Flow and transformation
of materials and energy
in a city, related to
energy, water and
carbon budgets.

Relevant processes: combustion, manufacturing,
irrigation, construction, respiration, etc.
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Introduction

Urban carbon fluxes

Lateral: entirely anthropogenic
processes, carbon mostly in solid
or liquid organic compounds

Vertical: exchange between
surface and atmosphere,
anthropogenic-biogenic processes,
carbon in the form of CO,
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Introduction

Vertical fluxes

Processes:

 Combustion
fossil fuels, biofuels, wood

* Respiration

humans, animals, plants, microbes

* Photosynthesis

plants, the only carbon sink!
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Monitoring CO, Fluxes in Cities

Inventory or bottom-up approaches
(indirect)

> Fuel and electricity consumption data-
statistics and emission factors

> Restricted spatial and temporal scales

> Downscaled using proxies (e.g. population
density, land cover types)

> Data/methodology consistency issues

FUME

B TCE 505 305 105 I*NH  30°H SN Te" N kol

180t W B400 W 120%W 1DDTW BW ECW AD°W 2D W

o

MHE 4 E 60" E BOFE 18 E  MIME  L40°E  LGD"E  18O°

180" DEOT N LA0° W 120"W  10DTW B0TW O BTN A0°W 20T W

ot E 40 E 60" E BO*E 10O E MIOYE  140°E 1G0"E  1BO°

WmtH 4N BN BO"HN

s TS "5 w5



Monitoring CO, Fluxes in Cities
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Monitoring CO, Fluxes in Cities
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Monitoring CO, Fluxes in Cities
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Monitoring CO, Fluxes in Cities

Direct measurements
> Approaches depending on scale (micro,
local, regional)

> Sensors at various heights (towers,
balloons, airplanes)

> Hampered by the extreme heterogeneity
of the urban environment (sources, sinks)
and the complexity of UBL dynamics

> Source/sink attribution is challenging

> Link between scales is difficult
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Eddy Covariance

» Direct CO, flux (Fc) estimations at local scale . Open Path CO,/H.0 Ag 28]
EC-System e (LI-7500)

> Variable measurement footprint N
(sources/sinks)
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Earth Observation

Current capabilities:

— Urban cover
— Urban morphology

— Biophysical/biochemical
parameters

Multiple spatial scales
Trade-off spatial - temporal
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Scope
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Scope

Develop a robust methodology for mapping and monitoring the urban CO, flux at high
spatial and temporal scales, meaningful for urban design decisions (neighbourhood,
block, or building scale)

> independent models for all the different components of the urban carbon cycle
> interdisciplinary perspective: combine EC with EO capabilities
> offer improved spatiotemporal urban CO, emissions’ monitoring

> Evaluate the developed methodology using independent local scale EC-measured F_.
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Methodology
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Methodology

FUME

INPUTS

Covariance

Data

land cover
morphology
temperature
census

MODELS

/ Building \

emissions (Eg)

i

Products

land cover
traffic data

Traffic
emissions (/)

o

2 /Other Spatial\ 4 Satellite N[ Eddy )

Meteorological

Sensor Network

N
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measurements

/
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land cover
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metabolism (R,;)

physiology
meteorology
land cover

morphology

Biogenic flux
(Rs + Ry-Py)

OUTPUTS

EVALUATION

SYNTHESIS

independent EC

measurements




Eddy Covariance

3 Eddy Covariance stations:
e BKLI (urban 15 years)
e BAES (urban 10 years)
 BLER (grassland 8(1) years)

15 meteorological stations

* UCL stations

e Street level stations
e Rural stations

FUME
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coverage

Earth Observation

VHR multispectral satellite

Aerial Orthophotos

classification

photointerpretation

resolution

[Aerial Lidar

—_—

—

—_—

3D structure J

spectral

‘ Aerial hyperspectral

‘ HR multispectral satellite

temporal

FUME

classification/biophysical

Dynamics: biophysical/
biochemical

————

Land cover

. Urban morphology/

roughness indicators

» Leaf Area Index (LAI)

Physiological status



Aerial LIDAR Data

High Vegetation
Low Vegetation

Buildings

Ground
Unclassified




Urban Morphology

® Digital Terrain Model

® Digital Surface Model

e Building Height
* Tree Height

® Resolution 1 m

JIFUME
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Leaf Area Index (LAl

®* Beer-Lambert law
approach for discrete-
return LiDAR (Solberg et
al. 2006):

Le = =B In(Ry/Ry¢)
R,: ground returns

R;: total returns
B: constant, setto 2

® Estimatedin1m
resolution
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Land Cover

0006925

0008928

0002928

392|000 393]000 394]000 395|000
0 250 500 m
 Official survey of Basel- —
Stadt (http://www.gva.bs.ch) fN
e Lidar data
O
BKLI BAES
Study 400 m 400 m
area radius radius
Buildings  31.9 38.0 35.8
Paved 21.6 20.8 20.5
Trees 12.2 14.2 15.2 R
Grass-Soil  22.8 24.4 27.0 "
Water 6.5 0.1 0.0
Main roads 4.3 4.7 5.3
Tempo 30 6.6 7.1 6.7 I Buildings
Il Roads
Other road 34 14 15 I Pavements ;
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http://www.gva.bs.ch/

Physiological in-situ measurements

KLeaf photosynthesis
— A, A-PAR, A-T

max/

® Leaf respiration
o R/eaﬁ R-T

® Soil respiration

k_ Rsoi// l?/ 7;oi/

® Soil Organic Carbon content

® Leaf Area Index (LAIl)
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Urban Canopy Photosynthesis Model

Horizontal resolution (ij)

A

Y

DSM,...
®* UCL expressed as 3D voxel grid
® Direct radiation modelling according to a ray
tracing algorithm (Amanatides & Woo, 1987)
® Diffuse radiation modelling according to Sky §
View Factors (SVFs) per horizontal level and 5____
direction (Lindberg & Grimmond, 2011) 'r%
® 30 min step, 5 m resolution (horizontal & <
vertical)
DSMmin

- Building Crown Shadow

FI_I M E B 7errain



Urban Canopy Photosynthesis Model

® Beer-Lambert law for radiation reduction inside the
canopy (Campbell and Norman, 1998)

Laif

® Fractions of the sunlit and shaded LAl per voxel

1
— —kpLAlg ;i —kpLAl;;
LAlgyn ik = k_b * @ "hEOk (1 —e b Uk) * Shijk

* |Leaf photosynthesis based on PAR (Ogren and Evans
1993), temperature (June et al. 2004), VPD (Leuning
1995) and B per voxel

® Canopy photosynthesis: sum of all horizontal layers L w

n
PV,ij = Z(Agross,lsun,ijk * LAIsun,ijk + Agross,lshade,ijk * LAIshade,ijk)
k=1

Laif s
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Results

Anthopogenic fluxes
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ddy Covariance

(15 years)
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ddy Covariance
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Eddy Covariance — Land Cover
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Eddy Covariance — Land Cover
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Results

Biogenic fluxes
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Field measurements

20

Lift campaign 23 — 25 July 2020

Extreme variability in E— :\rlriga_te_d ted
photosynthetic rates between — Mc;r(;-ig:ga ®
irrigated and non-irrigated areas ‘|‘ o Mean

and across trees - species Ll

104 l O
Only parks are reqularly irrigated,

street trees are probably 5 “l‘ -4 T
constantly under water limiting T
conditions [ o

T = = T

A. hippocastanum Tilia sp. A. platanoides P. x hispanica

Higher A, . during morning
measurements (lower
temperature, water saving
strategies)

A, (umol m2s™)

(@)
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Canopy Photosynthesis model
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Canopy Photosynthesis model

100 m grid spatial analysis 1.0 1
P, spatial variability is related to N
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Leaf level model evaluation

18
{1 O A platanoides
Evaluation at leaf scale for all 164 © A hippocastanum
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anthropogenic

biogenic

Conclusions

® Vehicle traffic emissions is a significant controlling factor of F. at both urban Basel sites and also the
reason of the higher emissions measured in BAES station.

* Correlations between F.and traffic counts are not straight-forward since other sources/sinks are always
present.

® Traffic congestion may be more related to F-than vehicle counts.

®* Photosynthetic rates (A
drought periods.

1ax) are extremely variable according to irrigation management at least during

® Street trees are highly vulnerable to water stress.
® Carbon sequestration during drought conditions can be significantly reduced.
®* Photosynthesis can potentially offset urban emissions up to 30 % during summer months.

® Sky view factor is an important urban attribute affecting canopy photosynthesis.
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Next Steps

® Investigation of clear relationships between traffic measurements and EC-measured F,

®* Determine the building heating emissions during winter according to air temperature, building volume

and building type

®* Modelling of emissions from human metabolism

anthropogenic

* Tree species classification using hyperspectral aerial imagery — Species-specific A .,

® LAl temporal variability according to Sentinel-2 imagery

biogenic

® Include understorey vegetation and grasses in the biogenic models

Model evaluation with Eddy Covariance (temporary installation) in an urban green area (summer 2021)
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